推广 热搜: 公司  快速  上海  中国  企业  未来    政策  系统  公司2 

生物计算:超越图灵模型的细胞计算机 | 智能渐近线

   日期:2025-02-25     作者:yebgkf    caijiyuan   评论:0    移动:http://www78564.xrbh.cn/mobile/news/34878.html
核心提示:1. Abelson, H.et al.  Amorphous computing. Commun. ACM 43, 5 (May 2000), 74–82.2. Adami, C.  The use of information t

1. Abelson, H.et al.  Amorphous computing. Commun. ACM 43, 5 (May 2000), 74–82.

2. Adami, C.  The use of information theory in evolutionary biology. Annals of the New York Academy of Sciences 1256, 1 (2012), 49–65.

3. Adleman, L.M.  Molecular computation of solutions to combinatorial problems. Science 266, 5187 (1994), 1021–1024.

4. Amos, M. and Goñi-Moreno, A.  Cellular computing and synthetic biology. Computational Matter (2018), 93–110.

5. Andrianantoandro, E., Basu, S., Karig, D.K., and Weiss, R.  Synthetic biology: New engineering rules for an emerging discipline. Molecular Systems Biology 2, 1 (2006), 2006.0028.

6. Ausländer, S., Ausländer, D., Fussenegger, M.  Synthetic biology—the synthesis of biology. Angewandte Chemie Intern. Edition 56, 23 (2017), 6396–419.

7. Ausländer, S. et al.  Programmable single-cell mammalian biocomputers. Nature 487, 7405 (2012), 123–127.

8. Beal, J. et al.  The long journey towards standards for engineering biosystems: Are the Molecular Biology and the Biotech communities ready to standardise?EMBO Reports 21, 5 (2020), e50521.

9. Benenson, Y.  Biomolecular computing systems: principles, progress and potential. Nature Reviews Genetics 13, 7 (2012), 455–468.

10. Bennett, C.H.  The thermodynamics of computation—a review. Intern. J. Theoretical Physics 21, (1982), 905–940.

11. Biswas, S., Clawson, W., and Levin, M.  Learning in transcriptional network models: Computational discovery of pathway-level memory and effective interventions. Intern. J. of Molecular Sciences 24, 1 (2022), 285.

12. Calcott, B. et al.  Engineering and biology: Counsel for a continued relationship. Biological Theory 10, (2015), 50–59.

13. Canadell, D. et al.  Implementing re-configurable biological computation with distributed multicellular consortia. Nucleic Acids Research 50, 21 (2022), 12578–12595.

14. Castle, S.D., Grierson, C.S., Gorochowski, T.E.  Towards an engineering theory of evolution. Nature Commun. 12, 1 (2021), 3326.

15. Chen, Y. et al.  Genetic circuit design automation for yeast. Nature Microbiology 5, 11 (2020), 1349–1360.

16. Church, G.M., Gao, Y., and Kosuri, S.  Next-generation digital information storage in DNA. Science 337, 6102 (2012), 1628–1628.

17. Conrad, M.  Molecular computing. Advances in Computers, 31 . Elsevier, 1990, 35–324.

18. Danchin, A.  Bacteria as computers making computers. FEMS Microbiology Reviews 33, 1 (2008), 3–26.

19. Daniel, R., Rubens, J.R., Sarpeshkar, R., and Lu, T.K.  Synthetic analog computation in living cells. Nature 497, 7451 (2013), 619–623.

20. de Lorenzo, V., Marliere, P., and Sole, R.  Bioremediation at a global scale: from the test tube to planet Earth. Microbial Biotechnology 9, 5 (2016), 618–625.

21. De Lorenzo, V. et al.  The power of synthetic biology for bioproduction, remediation and pollution control: the UN’s Sustainable Development Goals will inevitably require the application of molecular biology and biotechnology on a global scale. EMBO Reports 19, 4 (2018), e45658.

22. Espeso, D.R., Martçnez-Garcça, E., De Lorenzo, V., and Goñi-Moreno, Á.  Physical forces shape group identity of swimming Pseudomonas putida cells. Frontiers in Microbiology 7, 1437 (2016).

23. Gardner, T.S., Cantor, C.R., and Collins, J.J.  Construction of a genetic toggle switch in Escherichia coli. Nature 403, 6767 (2000), 339–342.

24. Goni-Moreno, A., Redondo-Nieto, M., Arroyo, F., and Castellanos, J.  Biocircuit design through engineering bacterial logic gates. Natural Computing 10, (2011), 119–127.

25. Goñi-Moreno, A. and Amos, M.  A reconfigurable NAND/NOR genetic logic gate. BMC Systems Biology 6, 1 (2012), 1–11.

26. Goñi-Moreno, A., Amos, M., and de la Cruz, F.  Multicellular computing using conjugation for wiring. PLoS One 8, 6 (2013), e65986.

27. Goñi-Moreno, Á., Benedetti, I., Kim, J., and de Lorenzo, V.  Deconvolution of gene expression noise into spatial dynamics of transcription factor–promoter interplay. ACS Synthetic Biology 6, 7 (2017), 1359–1369.

28. Goñi-Moreno, A. and Nikel, P.I.  High-performance biocomputing in synthetic biology–integrated transcriptional and metabolic circuits. Frontiers in Bioengineering and Biotechnology 40, (2019).

29. Grozinger, L. et al.  Pathways to cellular supremacy in biocomputing. Nature Commun. 10, 1 (2019), 5250.

30. Grozinger, L. and Goñi-Moreno, Á.  Computational evolution of gene circuit topologies to meet design requirements. In Proceedings of the 2023 Artificial Life Conf. MIT Press, Cambridge, MA, USA.

31. Jonas, E. and Kording, K.P. Could a neuroscientist understand a microprocessor? PLoS Computational Biology 13, 1 (2017), e1005268.

32. Knight, T.F. and Sussman, G.J.  Cellular gate technology. Massachusetts Inst of Tech Cambridge Artificial Intelligence Lab, 1998.

33. Li, X. et al.  Synthetic neural-like computing in microbial consortia for pattern recognition. Nature Commun. 12, 1 (2021), 3139.

34. Lou, C. et al.  Synthesizing a novel genetic sequential logic circuit: A push-on push-off switch. Molecular Systems Biology 6, 1 (2010), 350.

35. Macía, J., Posas, F., and Solé, R.V.  Distributed computation: The new wave of synthetic biology devices. Trends in Biotechnology 30, 6 (2012), 342–349.

36. MacLennan, B.J.  Natural computation and non-Turing models of computation. Theoretical Computer Science 317, 1–3 (2004), 115–145.

37. Manicka, S. and Levin, M. Minimal developmental computation: a causal network approach to understand morphogenetic pattern formation. Entropy 24, 1 (2022), 107.

38. Martínez-García, E. et al. SEVA 4.0: An update of the Standard European Vector Architecture database for advanced analysis and programming of bacterial phenotypes. Nucleic Acids Research 51, D1 (2023), D1558–D1567.

39. Meng, F. and Ellis, T. The second decade of synthetic biology: 2010–2020. Nature Commun. 11, 1 (2020), 5174.

40. Monod, J.  Chance and Necessity: An essay on the natural philosophy of modern biology , 1971.

41. Nielsen, A.A. et al.  Genetic circuit design automation. Science 352, 6281 (2016), aac7341.

42. Pájaro, M., Alonso, A.A., Otero-Muras, I., and Vázquez, C.  Stochastic modeling and numerical simulation of gene regulatory networks with protein bursting. J. Theoretical Biology 421, (2017), 51–70.

43. Pandi, A.et al.  metabolic perceptrons for neural computing in biological systems. Nature Commun. 10, 1 (2019), 3880.

44. Pattee, H.H. and Rączaszek-Leonardi, J.  How Does a Molecule Become a Message? LAWS, LANGUAGE and LIFE: Howard Pattee’s Classic Papers on the Physics of Symbols with Contemporary Commentary. Springer, 2012, 55–67.

45. Pezzulo, G. and Levin, M.  Top-down models in biology: Explanation and control of complex living systems above the molecular level. J. The Royal Society Interface 13, 124 (2016), 20160555.

46. Regot, S. et al. Distributed biological computation with multicellular engineered networks. Nature 469, 7329 (2011), 207–211.

47. Rizik, L. et al.  Synthetic neuromorphic computing in living cells. Nature Commun. 13, 1 (2022), 5602.

48. Sleight, S.C., Bartley, B.A., Lieviant, J.A., and Sauro, H.M.  Designing and engineering evolutionary robust genetic circuits. J. Biological Engineering 4, 1 (2010), 1–20.

49. Solé, R.V., Montañez, R., and Duran-Nebreda, S.  Synthetic circuit designs for earth terraformation. Biology Direct 10, 1 (2015), 1–10.

50. Srivastava, R. and Bagh, S.  A logically reversible double Feynman gate with molecular engineered bacteria arranged in an artificial neural network-type architecture. ACS Synthetic Biology 12, 1 (2022), 51–60.

51. Stoof, R. and Goñi-Moreno, Á.  Modelling co-translational dimerization for programmable nonlinearity in synthetic biology. J. Royal Society Interface . 17, 172 (2020), 20200561.

52. Tas, H., Grozinger, L., Goñi-Moreno, A., and de Lorenzo, V.  Automated design and implementation of a NOR gate in Pseudomonas putida. Synthetic Biology 6, 1 (2021), ysab024.

53. Tas, H. et al.   Contextual dependencies expand the re-usability of genetic inverters. Nature Commun. 12, 1 (2021), 355.

54. Wang, B., Kitney, R.I., Joly, N., and Buck, M.  Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology. Nature Commun. 2, 1 (2011), 508.

55. Xie, Z. et al.  Multi-input RNAi-based logic circuit for identification of specific cancer cells. Science 333, 6047 (2011), 1307–1311.

本文地址:http://www78564.xrbh.cn/news/34878.html    迅博思语 http://www78564.xrbh.cn/ , 查看更多

特别提示:本信息由相关用户自行提供,真实性未证实,仅供参考。请谨慎采用,风险自负。

 
 
更多>同类最新资讯
0相关评论

文章列表
相关文章
最新动态
推荐图文
最新资讯
点击排行
网站首页  |  二维码  |  关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  网站留言  |  RSS订阅  |  违规举报  |  粤ICP备2023022329号