业界动态
生物计算:超越图灵模型的细胞计算机 | 智能渐近线
2025-02-25 11:29

1. Abelson, H.et al.  Amorphous computing. Commun. ACM 43, 5 (May 2000), 74–82.

2. Adami, C.  The use of information theory in evolutionary biology. Annals of the New York Academy of Sciences 1256, 1 (2012), 49–65.

3. Adleman, L.M.  Molecular computation of solutions to combinatorial problems. Science 266, 5187 (1994), 1021–1024.

4. Amos, M. and Goñi-Moreno, A.  Cellular computing and synthetic biology. Computational Matter (2018), 93–110.

5. Andrianantoandro, E., Basu, S., Karig, D.K., and Weiss, R.  Synthetic biology: New engineering rules for an emerging discipline. Molecular Systems Biology 2, 1 (2006), 2006.0028.

6. Ausländer, S., Ausländer, D., Fussenegger, M.  Synthetic biology—the synthesis of biology. Angewandte Chemie Intern. Edition 56, 23 (2017), 6396–419.

7. Ausländer, S. et al.  Programmable single-cell mammalian biocomputers. Nature 487, 7405 (2012), 123–127.

8. Beal, J. et al.  The long journey towards standards for engineering biosystems: Are the Molecular Biology and the Biotech communities ready to standardise?EMBO Reports 21, 5 (2020), e50521.

9. Benenson, Y.  Biomolecular computing systems: principles, progress and potential. Nature Reviews Genetics 13, 7 (2012), 455–468.

10. Bennett, C.H.  The thermodynamics of computation—a review. Intern. J. Theoretical Physics 21, (1982), 905–940.

11. Biswas, S., Clawson, W., and Levin, M.  Learning in transcriptional network models: Computational discovery of pathway-level memory and effective interventions. Intern. J. of Molecular Sciences 24, 1 (2022), 285.

12. Calcott, B. et al.  Engineering and biology: Counsel for a continued relationship. Biological Theory 10, (2015), 50–59.

13. Canadell, D. et al.  Implementing re-configurable biological computation with distributed multicellular consortia. Nucleic Acids Research 50, 21 (2022), 12578–12595.

14. Castle, S.D., Grierson, C.S., Gorochowski, T.E.  Towards an engineering theory of evolution. Nature Commun. 12, 1 (2021), 3326.

15. Chen, Y. et al.  Genetic circuit design automation for yeast. Nature Microbiology 5, 11 (2020), 1349–1360.

16. Church, G.M., Gao, Y., and Kosuri, S.  Next-generation digital information storage in DNA. Science 337, 6102 (2012), 1628–1628.

17. Conrad, M.  Molecular computing. Advances in Computers, 31 . Elsevier, 1990, 35–324.

18. Danchin, A.  Bacteria as computers making computers. FEMS Microbiology Reviews 33, 1 (2008), 3–26.

19. Daniel, R., Rubens, J.R., Sarpeshkar, R., and Lu, T.K.  Synthetic analog computation in living cells. Nature 497, 7451 (2013), 619–623.

20. de Lorenzo, V., Marliere, P., and Sole, R.  Bioremediation at a global scale: from the test tube to planet Earth. Microbial Biotechnology 9, 5 (2016), 618–625.

21. De Lorenzo, V. et al.  The power of synthetic biology for bioproduction, remediation and pollution control: the UN’s Sustainable Development Goals will inevitably require the application of molecular biology and biotechnology on a global scale. EMBO Reports 19, 4 (2018), e45658.

22. Espeso, D.R., Martçnez-Garcça, E., De Lorenzo, V., and Goñi-Moreno, Á.  Physical forces shape group identity of swimming Pseudomonas putida cells. Frontiers in Microbiology 7, 1437 (2016).

23. Gardner, T.S., Cantor, C.R., and Collins, J.J.  Construction of a genetic toggle switch in Escherichia coli. Nature 403, 6767 (2000), 339–342.

24. Goni-Moreno, A., Redondo-Nieto, M., Arroyo, F., and Castellanos, J.  Biocircuit design through engineering bacterial logic gates. Natural Computing 10, (2011), 119–127.

25. Goñi-Moreno, A. and Amos, M.  A reconfigurable NAND/NOR genetic logic gate. BMC Systems Biology 6, 1 (2012), 1–11.

26. Goñi-Moreno, A., Amos, M., and de la Cruz, F.  Multicellular computing using conjugation for wiring. PLoS One 8, 6 (2013), e65986.

27. Goñi-Moreno, Á., Benedetti, I., Kim, J., and de Lorenzo, V.  Deconvolution of gene expression noise into spatial dynamics of transcription factor–promoter interplay. ACS Synthetic Biology 6, 7 (2017), 1359–1369.

28. Goñi-Moreno, A. and Nikel, P.I.  High-performance biocomputing in synthetic biology–integrated transcriptional and metabolic circuits. Frontiers in Bioengineering and Biotechnology 40, (2019).

29. Grozinger, L. et al.  Pathways to cellular supremacy in biocomputing. Nature Commun. 10, 1 (2019), 5250.

30. Grozinger, L. and Goñi-Moreno, Á.  Computational evolution of gene circuit topologies to meet design requirements. In Proceedings of the 2023 Artificial Life Conf. MIT Press, Cambridge, MA, USA.

31. Jonas, E. and Kording, K.P. Could a neuroscientist understand a microprocessor? PLoS Computational Biology 13, 1 (2017), e1005268.

32. Knight, T.F. and Sussman, G.J.  Cellular gate technology. Massachusetts Inst of Tech Cambridge Artificial Intelligence Lab, 1998.

33. Li, X. et al.  Synthetic neural-like computing in microbial consortia for pattern recognition. Nature Commun. 12, 1 (2021), 3139.

34. Lou, C. et al.  Synthesizing a novel genetic sequential logic circuit: A push-on push-off switch. Molecular Systems Biology 6, 1 (2010), 350.

35. Macía, J., Posas, F., and Solé, R.V.  Distributed computation: The new wave of synthetic biology devices. Trends in Biotechnology 30, 6 (2012), 342–349.

36. MacLennan, B.J.  Natural computation and non-Turing models of computation. Theoretical Computer Science 317, 1–3 (2004), 115–145.

37. Manicka, S. and Levin, M. Minimal developmental computation: a causal network approach to understand morphogenetic pattern formation. Entropy 24, 1 (2022), 107.

38. Martínez-García, E. et al. SEVA 4.0: An update of the Standard European Vector Architecture database for advanced analysis and programming of bacterial phenotypes. Nucleic Acids Research 51, D1 (2023), D1558–D1567.

39. Meng, F. and Ellis, T. The second decade of synthetic biology: 2010–2020. Nature Commun. 11, 1 (2020), 5174.

40. Monod, J.  Chance and Necessity: An essay on the natural philosophy of modern biology , 1971.

41. Nielsen, A.A. et al.  Genetic circuit design automation. Science 352, 6281 (2016), aac7341.

42. Pájaro, M., Alonso, A.A., Otero-Muras, I., and Vázquez, C.  Stochastic modeling and numerical simulation of gene regulatory networks with protein bursting. J. Theoretical Biology 421, (2017), 51–70.

43. Pandi, A.et al.  metabolic perceptrons for neural computing in biological systems. Nature Commun. 10, 1 (2019), 3880.

44. Pattee, H.H. and Rączaszek-Leonardi, J.  How Does a Molecule Become a Message? LAWS, LANGUAGE and LIFE: Howard Pattee’s Classic Papers on the Physics of Symbols with Contemporary Commentary. Springer, 2012, 55–67.

45. Pezzulo, G. and Levin, M.  Top-down models in biology: Explanation and control of complex living systems above the molecular level. J. The Royal Society Interface 13, 124 (2016), 20160555.

46. Regot, S. et al. Distributed biological computation with multicellular engineered networks. Nature 469, 7329 (2011), 207–211.

47. Rizik, L. et al.  Synthetic neuromorphic computing in living cells. Nature Commun. 13, 1 (2022), 5602.

48. Sleight, S.C., Bartley, B.A., Lieviant, J.A., and Sauro, H.M.  Designing and engineering evolutionary robust genetic circuits. J. Biological Engineering 4, 1 (2010), 1–20.

49. Solé, R.V., Montañez, R., and Duran-Nebreda, S.  Synthetic circuit designs for earth terraformation. Biology Direct 10, 1 (2015), 1–10.

50. Srivastava, R. and Bagh, S.  A logically reversible double Feynman gate with molecular engineered bacteria arranged in an artificial neural network-type architecture. ACS Synthetic Biology 12, 1 (2022), 51–60.

51. Stoof, R. and Goñi-Moreno, Á.  Modelling co-translational dimerization for programmable nonlinearity in synthetic biology. J. Royal Society Interface . 17, 172 (2020), 20200561.

52. Tas, H., Grozinger, L., Goñi-Moreno, A., and de Lorenzo, V.  Automated design and implementation of a NOR gate in Pseudomonas putida. Synthetic Biology 6, 1 (2021), ysab024.

53. Tas, H. et al.   Contextual dependencies expand the re-usability of genetic inverters. Nature Commun. 12, 1 (2021), 355.

54. Wang, B., Kitney, R.I., Joly, N., and Buck, M.  Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology. Nature Commun. 2, 1 (2011), 508.

55. Xie, Z. et al.  Multi-input RNAi-based logic circuit for identification of specific cancer cells. Science 333, 6047 (2011), 1307–1311.

    以上就是本篇文章【生物计算:超越图灵模型的细胞计算机 | 智能渐近线】的全部内容了,欢迎阅览 ! 文章地址:http://www78564.xrbh.cn/news/34878.html 
     文章      相关文章      动态      同类文章      热门文章      栏目首页      网站地图      返回首页 迅博思语移动站 http://www78564.xrbh.cn/mobile/ , 查看更多   
最新文章
雪乡深度游玩攻略,在合适的地方感受最佳体验
雪乡,顾名思义,其最直观的美便体现在那漫天飞舞、洁白无瑕的雪花上。这里的雪质纯净,雪量丰厚,每年的冬季,整个村庄被厚厚的
凉山最大水果批发市场预计3月底启用
2月7日上午,记者走进位于西昌市安宁镇成凉工业园区,全州最大的“果篮子”工程——西昌市攀西金泰水果批发市场已顺利通过竣工验
外媒:日本11月大米价格涨幅创新高
  中新经纬12月20日电据日本共同社报道,日本总务省20日公布的11月全国消费者物价指数(2020年为100,生鲜食品除外)为109.2,较
热搜第一!热播剧涉嫌抄袭?剧组紧急回应
由、主演的电视剧《国色芳华》正在热播,虽然开播没几天,却话题度拉满。今天(1月13日),相关话题#国色芳华妆造被指抄袭# 冲
游戏大树,PC滋生新年轮
从健美裤到瑜伽裤,是上世纪迪厅的灯球映照着的时尚的轮回。而今,同样的轮回似乎在游戏行业初现苗头。2000万销量与10亿美元收入
春风年度荐书丨张遇:在人物命运流转中,凝视现代人的情感变迁
潮新闻客户端 记者 方涛第13届“潮新闻·浙江新华”春风悦读榜系列活动于2月18日正式启动。目前,来自国内44家出版社的知名书业
盐城经开区开展食品安全宣传周活动
近日,江苏盐城经济技术开发区在高教公寓综合体广场举行食品安全宣传周活动启动仪式,进一步加强食品安全科普和诚信宣传教育。活
向上,再向上! | 2025,看上海的
2025年政府工作报告宣布上海城市经济规模进入了5万亿元以上的新阶段放眼全球只有纽约、东京这样的“超级城市”才有这个实力但站
奇幻电影《阴阳师0》预售开启 晴明博雅共赴“咒术之战”
由日本奇幻文学巅峰之作《阴阳师》系列小说改编的电影《阴阳师0》今日正式开启预售,同时释出终极预告。该片由小说原作者梦枕貘
直球视线|欧冠十六强抽签后,我认为皇马卫冕的可能性非常大
我一向不兜圈子,我认为还是皇马。当然现在说这件事有点早,暂且留个伏笔。下面还是说十六强抽签、以及未来的八进四的局势好了(