业界动态
生物计算:超越图灵模型的细胞计算机 | 智能渐近线
2025-02-25 11:29

1. Abelson, H.et al.  Amorphous computing. Commun. ACM 43, 5 (May 2000), 74–82.

2. Adami, C.  The use of information theory in evolutionary biology. Annals of the New York Academy of Sciences 1256, 1 (2012), 49–65.

3. Adleman, L.M.  Molecular computation of solutions to combinatorial problems. Science 266, 5187 (1994), 1021–1024.

4. Amos, M. and Goñi-Moreno, A.  Cellular computing and synthetic biology. Computational Matter (2018), 93–110.

5. Andrianantoandro, E., Basu, S., Karig, D.K., and Weiss, R.  Synthetic biology: New engineering rules for an emerging discipline. Molecular Systems Biology 2, 1 (2006), 2006.0028.

6. Ausländer, S., Ausländer, D., Fussenegger, M.  Synthetic biology—the synthesis of biology. Angewandte Chemie Intern. Edition 56, 23 (2017), 6396–419.

7. Ausländer, S. et al.  Programmable single-cell mammalian biocomputers. Nature 487, 7405 (2012), 123–127.

8. Beal, J. et al.  The long journey towards standards for engineering biosystems: Are the Molecular Biology and the Biotech communities ready to standardise?EMBO Reports 21, 5 (2020), e50521.

9. Benenson, Y.  Biomolecular computing systems: principles, progress and potential. Nature Reviews Genetics 13, 7 (2012), 455–468.

10. Bennett, C.H.  The thermodynamics of computation—a review. Intern. J. Theoretical Physics 21, (1982), 905–940.

11. Biswas, S., Clawson, W., and Levin, M.  Learning in transcriptional network models: Computational discovery of pathway-level memory and effective interventions. Intern. J. of Molecular Sciences 24, 1 (2022), 285.

12. Calcott, B. et al.  Engineering and biology: Counsel for a continued relationship. Biological Theory 10, (2015), 50–59.

13. Canadell, D. et al.  Implementing re-configurable biological computation with distributed multicellular consortia. Nucleic Acids Research 50, 21 (2022), 12578–12595.

14. Castle, S.D., Grierson, C.S., Gorochowski, T.E.  Towards an engineering theory of evolution. Nature Commun. 12, 1 (2021), 3326.

15. Chen, Y. et al.  Genetic circuit design automation for yeast. Nature Microbiology 5, 11 (2020), 1349–1360.

16. Church, G.M., Gao, Y., and Kosuri, S.  Next-generation digital information storage in DNA. Science 337, 6102 (2012), 1628–1628.

17. Conrad, M.  Molecular computing. Advances in Computers, 31 . Elsevier, 1990, 35–324.

18. Danchin, A.  Bacteria as computers making computers. FEMS Microbiology Reviews 33, 1 (2008), 3–26.

19. Daniel, R., Rubens, J.R., Sarpeshkar, R., and Lu, T.K.  Synthetic analog computation in living cells. Nature 497, 7451 (2013), 619–623.

20. de Lorenzo, V., Marliere, P., and Sole, R.  Bioremediation at a global scale: from the test tube to planet Earth. Microbial Biotechnology 9, 5 (2016), 618–625.

21. De Lorenzo, V. et al.  The power of synthetic biology for bioproduction, remediation and pollution control: the UN’s Sustainable Development Goals will inevitably require the application of molecular biology and biotechnology on a global scale. EMBO Reports 19, 4 (2018), e45658.

22. Espeso, D.R., Martçnez-Garcça, E., De Lorenzo, V., and Goñi-Moreno, Á.  Physical forces shape group identity of swimming Pseudomonas putida cells. Frontiers in Microbiology 7, 1437 (2016).

23. Gardner, T.S., Cantor, C.R., and Collins, J.J.  Construction of a genetic toggle switch in Escherichia coli. Nature 403, 6767 (2000), 339–342.

24. Goni-Moreno, A., Redondo-Nieto, M., Arroyo, F., and Castellanos, J.  Biocircuit design through engineering bacterial logic gates. Natural Computing 10, (2011), 119–127.

25. Goñi-Moreno, A. and Amos, M.  A reconfigurable NAND/NOR genetic logic gate. BMC Systems Biology 6, 1 (2012), 1–11.

26. Goñi-Moreno, A., Amos, M., and de la Cruz, F.  Multicellular computing using conjugation for wiring. PLoS One 8, 6 (2013), e65986.

27. Goñi-Moreno, Á., Benedetti, I., Kim, J., and de Lorenzo, V.  Deconvolution of gene expression noise into spatial dynamics of transcription factor–promoter interplay. ACS Synthetic Biology 6, 7 (2017), 1359–1369.

28. Goñi-Moreno, A. and Nikel, P.I.  High-performance biocomputing in synthetic biology–integrated transcriptional and metabolic circuits. Frontiers in Bioengineering and Biotechnology 40, (2019).

29. Grozinger, L. et al.  Pathways to cellular supremacy in biocomputing. Nature Commun. 10, 1 (2019), 5250.

30. Grozinger, L. and Goñi-Moreno, Á.  Computational evolution of gene circuit topologies to meet design requirements. In Proceedings of the 2023 Artificial Life Conf. MIT Press, Cambridge, MA, USA.

31. Jonas, E. and Kording, K.P. Could a neuroscientist understand a microprocessor? PLoS Computational Biology 13, 1 (2017), e1005268.

32. Knight, T.F. and Sussman, G.J.  Cellular gate technology. Massachusetts Inst of Tech Cambridge Artificial Intelligence Lab, 1998.

33. Li, X. et al.  Synthetic neural-like computing in microbial consortia for pattern recognition. Nature Commun. 12, 1 (2021), 3139.

34. Lou, C. et al.  Synthesizing a novel genetic sequential logic circuit: A push-on push-off switch. Molecular Systems Biology 6, 1 (2010), 350.

35. Macía, J., Posas, F., and Solé, R.V.  Distributed computation: The new wave of synthetic biology devices. Trends in Biotechnology 30, 6 (2012), 342–349.

36. MacLennan, B.J.  Natural computation and non-Turing models of computation. Theoretical Computer Science 317, 1–3 (2004), 115–145.

37. Manicka, S. and Levin, M. Minimal developmental computation: a causal network approach to understand morphogenetic pattern formation. Entropy 24, 1 (2022), 107.

38. Martínez-García, E. et al. SEVA 4.0: An update of the Standard European Vector Architecture database for advanced analysis and programming of bacterial phenotypes. Nucleic Acids Research 51, D1 (2023), D1558–D1567.

39. Meng, F. and Ellis, T. The second decade of synthetic biology: 2010–2020. Nature Commun. 11, 1 (2020), 5174.

40. Monod, J.  Chance and Necessity: An essay on the natural philosophy of modern biology , 1971.

41. Nielsen, A.A. et al.  Genetic circuit design automation. Science 352, 6281 (2016), aac7341.

42. Pájaro, M., Alonso, A.A., Otero-Muras, I., and Vázquez, C.  Stochastic modeling and numerical simulation of gene regulatory networks with protein bursting. J. Theoretical Biology 421, (2017), 51–70.

43. Pandi, A.et al.  metabolic perceptrons for neural computing in biological systems. Nature Commun. 10, 1 (2019), 3880.

44. Pattee, H.H. and Rączaszek-Leonardi, J.  How Does a Molecule Become a Message? LAWS, LANGUAGE and LIFE: Howard Pattee’s Classic Papers on the Physics of Symbols with Contemporary Commentary. Springer, 2012, 55–67.

45. Pezzulo, G. and Levin, M.  Top-down models in biology: Explanation and control of complex living systems above the molecular level. J. The Royal Society Interface 13, 124 (2016), 20160555.

46. Regot, S. et al. Distributed biological computation with multicellular engineered networks. Nature 469, 7329 (2011), 207–211.

47. Rizik, L. et al.  Synthetic neuromorphic computing in living cells. Nature Commun. 13, 1 (2022), 5602.

48. Sleight, S.C., Bartley, B.A., Lieviant, J.A., and Sauro, H.M.  Designing and engineering evolutionary robust genetic circuits. J. Biological Engineering 4, 1 (2010), 1–20.

49. Solé, R.V., Montañez, R., and Duran-Nebreda, S.  Synthetic circuit designs for earth terraformation. Biology Direct 10, 1 (2015), 1–10.

50. Srivastava, R. and Bagh, S.  A logically reversible double Feynman gate with molecular engineered bacteria arranged in an artificial neural network-type architecture. ACS Synthetic Biology 12, 1 (2022), 51–60.

51. Stoof, R. and Goñi-Moreno, Á.  Modelling co-translational dimerization for programmable nonlinearity in synthetic biology. J. Royal Society Interface . 17, 172 (2020), 20200561.

52. Tas, H., Grozinger, L., Goñi-Moreno, A., and de Lorenzo, V.  Automated design and implementation of a NOR gate in Pseudomonas putida. Synthetic Biology 6, 1 (2021), ysab024.

53. Tas, H. et al.   Contextual dependencies expand the re-usability of genetic inverters. Nature Commun. 12, 1 (2021), 355.

54. Wang, B., Kitney, R.I., Joly, N., and Buck, M.  Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology. Nature Commun. 2, 1 (2011), 508.

55. Xie, Z. et al.  Multi-input RNAi-based logic circuit for identification of specific cancer cells. Science 333, 6047 (2011), 1307–1311.

    以上就是本篇文章【生物计算:超越图灵模型的细胞计算机 | 智能渐近线】的全部内容了,欢迎阅览 ! 文章地址:http://www78564.xrbh.cn/news/34878.html 
     文章      相关文章      动态      同类文章      热门文章      栏目首页      网站地图      返回首页 迅博思语移动站 http://www78564.xrbh.cn/mobile/ , 查看更多   
最新文章
中交地产1元“退房”:战略转型与债务困境下的断臂求生
中交地产的这次“断臂求生”,不仅是企业自救的手段,更是一种行业趋势的缩影。中房报记者 梁笑梅丨北京报道7月25日,深陷退市危
邛崃市2025年7月招聘信息第四期共30家企业
四川金忠食品股份有限公司(邛崃市新邛路517号)1.研发工艺员 1名要求:40岁以下,大专以上学历,食品类专业,具备食品(肉制品
浙江义乌“大企帮小店”探索共富新路径
方静“张大酥是专门经营养生糕点的店铺,今年初才进驻李祖。当时‘大企’主动帮我们设计了具有李祖特色的糕点套装,义乌市市场监
北京移动应急通信保障恢复怀柔区72座基站,抢通40个行政村
7月28日北京青年报记者从北京移动了解到,截至18时,北京移动已抢通怀柔区雁栖开发区至汤河口48芯光缆一条,恢复汤河口、宝山、
小猫看伤花5000元,宠主质疑:诊所每天对小猫进行抽血检查等诊疗行为属于“过度医疗”
近日,芜湖繁昌区法院参考专家辅助人的意见,引导双方申请司法鉴定。调解过程中,专家辅助人详细分析了小猫病历,明确指出检查报
克莱斯勒300C 2.7汽车配件前羊角轴头刹车盘
克莱斯勒300C/2.7三元催化器 峰哲汽车尾灯后保险杠 切诺基大灯 我公司是一家专业从事别克与克莱斯勒汽车配件销售与服务的汽配企
他们是CS上海Major的“幕后功臣”,完美电竞合作伙伴联盟成立
从2019年的第九届DOTA2国际邀请赛(TI9),到2020年的英雄联盟全球总决赛(S10)、2024年的反恐精英世界锦标赛(CS上海Major),
军事资讯AI速递:昨夜今晨军事热点一览 丨2025年8月21日
  军事领域动态复杂,事件可能迅速改变全球安全格局。我们整理了昨夜今晨最重要的军事新闻,包括关键行动和政策变化,让您清晰
刚出炉!上海崇明成功认证“国际湿地城市”,将迎来什么发展机遇?
《湿地公约》第十五届缔约方大会于7月23日至31日在津巴布韦维多利亚瀑布城举行。全球共16个国家31个城市获得第三批“国际湿地城
疑似OPPO Find X9 Pro核心硬件曝光:搭载天玑9500 主频突破4GHz
【TechWeb】去年10月,OPPO推出了OPPO Find X8 Pro,这是全球首款配备双潜望长焦的天玑旗舰,拥有一颗5000万像素3倍索尼LYT-600