业界动态
生物计算:超越图灵模型的细胞计算机 | 智能渐近线
2025-02-25 11:29

1. Abelson, H.et al.  Amorphous computing. Commun. ACM 43, 5 (May 2000), 74–82.

2. Adami, C.  The use of information theory in evolutionary biology. Annals of the New York Academy of Sciences 1256, 1 (2012), 49–65.

3. Adleman, L.M.  Molecular computation of solutions to combinatorial problems. Science 266, 5187 (1994), 1021–1024.

4. Amos, M. and Goñi-Moreno, A.  Cellular computing and synthetic biology. Computational Matter (2018), 93–110.

5. Andrianantoandro, E., Basu, S., Karig, D.K., and Weiss, R.  Synthetic biology: New engineering rules for an emerging discipline. Molecular Systems Biology 2, 1 (2006), 2006.0028.

6. Ausländer, S., Ausländer, D., Fussenegger, M.  Synthetic biology—the synthesis of biology. Angewandte Chemie Intern. Edition 56, 23 (2017), 6396–419.

7. Ausländer, S. et al.  Programmable single-cell mammalian biocomputers. Nature 487, 7405 (2012), 123–127.

8. Beal, J. et al.  The long journey towards standards for engineering biosystems: Are the Molecular Biology and the Biotech communities ready to standardise?EMBO Reports 21, 5 (2020), e50521.

9. Benenson, Y.  Biomolecular computing systems: principles, progress and potential. Nature Reviews Genetics 13, 7 (2012), 455–468.

10. Bennett, C.H.  The thermodynamics of computation—a review. Intern. J. Theoretical Physics 21, (1982), 905–940.

11. Biswas, S., Clawson, W., and Levin, M.  Learning in transcriptional network models: Computational discovery of pathway-level memory and effective interventions. Intern. J. of Molecular Sciences 24, 1 (2022), 285.

12. Calcott, B. et al.  Engineering and biology: Counsel for a continued relationship. Biological Theory 10, (2015), 50–59.

13. Canadell, D. et al.  Implementing re-configurable biological computation with distributed multicellular consortia. Nucleic Acids Research 50, 21 (2022), 12578–12595.

14. Castle, S.D., Grierson, C.S., Gorochowski, T.E.  Towards an engineering theory of evolution. Nature Commun. 12, 1 (2021), 3326.

15. Chen, Y. et al.  Genetic circuit design automation for yeast. Nature Microbiology 5, 11 (2020), 1349–1360.

16. Church, G.M., Gao, Y., and Kosuri, S.  Next-generation digital information storage in DNA. Science 337, 6102 (2012), 1628–1628.

17. Conrad, M.  Molecular computing. Advances in Computers, 31 . Elsevier, 1990, 35–324.

18. Danchin, A.  Bacteria as computers making computers. FEMS Microbiology Reviews 33, 1 (2008), 3–26.

19. Daniel, R., Rubens, J.R., Sarpeshkar, R., and Lu, T.K.  Synthetic analog computation in living cells. Nature 497, 7451 (2013), 619–623.

20. de Lorenzo, V., Marliere, P., and Sole, R.  Bioremediation at a global scale: from the test tube to planet Earth. Microbial Biotechnology 9, 5 (2016), 618–625.

21. De Lorenzo, V. et al.  The power of synthetic biology for bioproduction, remediation and pollution control: the UN’s Sustainable Development Goals will inevitably require the application of molecular biology and biotechnology on a global scale. EMBO Reports 19, 4 (2018), e45658.

22. Espeso, D.R., Martçnez-Garcça, E., De Lorenzo, V., and Goñi-Moreno, Á.  Physical forces shape group identity of swimming Pseudomonas putida cells. Frontiers in Microbiology 7, 1437 (2016).

23. Gardner, T.S., Cantor, C.R., and Collins, J.J.  Construction of a genetic toggle switch in Escherichia coli. Nature 403, 6767 (2000), 339–342.

24. Goni-Moreno, A., Redondo-Nieto, M., Arroyo, F., and Castellanos, J.  Biocircuit design through engineering bacterial logic gates. Natural Computing 10, (2011), 119–127.

25. Goñi-Moreno, A. and Amos, M.  A reconfigurable NAND/NOR genetic logic gate. BMC Systems Biology 6, 1 (2012), 1–11.

26. Goñi-Moreno, A., Amos, M., and de la Cruz, F.  Multicellular computing using conjugation for wiring. PLoS One 8, 6 (2013), e65986.

27. Goñi-Moreno, Á., Benedetti, I., Kim, J., and de Lorenzo, V.  Deconvolution of gene expression noise into spatial dynamics of transcription factor–promoter interplay. ACS Synthetic Biology 6, 7 (2017), 1359–1369.

28. Goñi-Moreno, A. and Nikel, P.I.  High-performance biocomputing in synthetic biology–integrated transcriptional and metabolic circuits. Frontiers in Bioengineering and Biotechnology 40, (2019).

29. Grozinger, L. et al.  Pathways to cellular supremacy in biocomputing. Nature Commun. 10, 1 (2019), 5250.

30. Grozinger, L. and Goñi-Moreno, Á.  Computational evolution of gene circuit topologies to meet design requirements. In Proceedings of the 2023 Artificial Life Conf. MIT Press, Cambridge, MA, USA.

31. Jonas, E. and Kording, K.P. Could a neuroscientist understand a microprocessor? PLoS Computational Biology 13, 1 (2017), e1005268.

32. Knight, T.F. and Sussman, G.J.  Cellular gate technology. Massachusetts Inst of Tech Cambridge Artificial Intelligence Lab, 1998.

33. Li, X. et al.  Synthetic neural-like computing in microbial consortia for pattern recognition. Nature Commun. 12, 1 (2021), 3139.

34. Lou, C. et al.  Synthesizing a novel genetic sequential logic circuit: A push-on push-off switch. Molecular Systems Biology 6, 1 (2010), 350.

35. Macía, J., Posas, F., and Solé, R.V.  Distributed computation: The new wave of synthetic biology devices. Trends in Biotechnology 30, 6 (2012), 342–349.

36. MacLennan, B.J.  Natural computation and non-Turing models of computation. Theoretical Computer Science 317, 1–3 (2004), 115–145.

37. Manicka, S. and Levin, M. Minimal developmental computation: a causal network approach to understand morphogenetic pattern formation. Entropy 24, 1 (2022), 107.

38. Martínez-García, E. et al. SEVA 4.0: An update of the Standard European Vector Architecture database for advanced analysis and programming of bacterial phenotypes. Nucleic Acids Research 51, D1 (2023), D1558–D1567.

39. Meng, F. and Ellis, T. The second decade of synthetic biology: 2010–2020. Nature Commun. 11, 1 (2020), 5174.

40. Monod, J.  Chance and Necessity: An essay on the natural philosophy of modern biology , 1971.

41. Nielsen, A.A. et al.  Genetic circuit design automation. Science 352, 6281 (2016), aac7341.

42. Pájaro, M., Alonso, A.A., Otero-Muras, I., and Vázquez, C.  Stochastic modeling and numerical simulation of gene regulatory networks with protein bursting. J. Theoretical Biology 421, (2017), 51–70.

43. Pandi, A.et al.  metabolic perceptrons for neural computing in biological systems. Nature Commun. 10, 1 (2019), 3880.

44. Pattee, H.H. and Rączaszek-Leonardi, J.  How Does a Molecule Become a Message? LAWS, LANGUAGE and LIFE: Howard Pattee’s Classic Papers on the Physics of Symbols with Contemporary Commentary. Springer, 2012, 55–67.

45. Pezzulo, G. and Levin, M.  Top-down models in biology: Explanation and control of complex living systems above the molecular level. J. The Royal Society Interface 13, 124 (2016), 20160555.

46. Regot, S. et al. Distributed biological computation with multicellular engineered networks. Nature 469, 7329 (2011), 207–211.

47. Rizik, L. et al.  Synthetic neuromorphic computing in living cells. Nature Commun. 13, 1 (2022), 5602.

48. Sleight, S.C., Bartley, B.A., Lieviant, J.A., and Sauro, H.M.  Designing and engineering evolutionary robust genetic circuits. J. Biological Engineering 4, 1 (2010), 1–20.

49. Solé, R.V., Montañez, R., and Duran-Nebreda, S.  Synthetic circuit designs for earth terraformation. Biology Direct 10, 1 (2015), 1–10.

50. Srivastava, R. and Bagh, S.  A logically reversible double Feynman gate with molecular engineered bacteria arranged in an artificial neural network-type architecture. ACS Synthetic Biology 12, 1 (2022), 51–60.

51. Stoof, R. and Goñi-Moreno, Á.  Modelling co-translational dimerization for programmable nonlinearity in synthetic biology. J. Royal Society Interface . 17, 172 (2020), 20200561.

52. Tas, H., Grozinger, L., Goñi-Moreno, A., and de Lorenzo, V.  Automated design and implementation of a NOR gate in Pseudomonas putida. Synthetic Biology 6, 1 (2021), ysab024.

53. Tas, H. et al.   Contextual dependencies expand the re-usability of genetic inverters. Nature Commun. 12, 1 (2021), 355.

54. Wang, B., Kitney, R.I., Joly, N., and Buck, M.  Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology. Nature Commun. 2, 1 (2011), 508.

55. Xie, Z. et al.  Multi-input RNAi-based logic circuit for identification of specific cancer cells. Science 333, 6047 (2011), 1307–1311.

    以上就是本篇文章【生物计算:超越图灵模型的细胞计算机 | 智能渐近线】的全部内容了,欢迎阅览 ! 文章地址:http://www78564.xrbh.cn/news/34878.html 
     文章      相关文章      动态      同类文章      热门文章      栏目首页      网站地图      返回首页 迅博思语移动站 http://www78564.xrbh.cn/mobile/ , 查看更多   
最新文章
颜霸邝玲玲,我的泰娱新老婆
看到邝玲玲的第一眼多数人就能明白为什么她可以在中国收获超高人气。中泰混血的她脸上没有泰系常见的钝感,五官流畅、大气、明艳
6G进入标准化元年 通信专家建议重点挖掘垂直行业需求
3月27日至31日,2025中关村论坛年会在京举行。期间,中国工程院院士张平,中关村泛联院院长、中国移动研究院院长黄宇红,中关村
三星手机重装系统攻略:五步轻松恢复出厂设置三星手机系统「三星手机重装系统攻略:五步轻松恢复出厂设置」
简介:在现代智能手机的使用中,重装系统或恢复出厂设置是解决许多软件问题的有效手段。对于三星手机用户,重装系统可以帮助清理
买全球吃全球 感受“舌尖上”的消博会
中国青年报客户端讯(中青校媒记者 田恒慧 中青报·中青网见习记者 戴瑶 记者 任明超)4月13日,第五届中国国际消费品博览会(简
仰天长叹,山东男篮0:2出局:落寞爆冷,克里斯成难掩的心痛短板
CBA季后赛12进8,首战失利的山东男篮,客场挑战北控男篮。对于山东男篮来说,球队已经没有任何的退路,如果再输,那么本赛季就提
新奥好彩免费资料大全-精选解释解析落实酷派5855手机「新奥好彩免费资料大全-精选解释解析落实」
新奥好彩是一款在中国颇受欢迎的彩票游戏,借助现代科技和大数据分析技术,为广大玩家提供了丰富的购彩体验与相应的策略指导。随
这家“药厂”,专治年轻人不开心
中国精酿啤酒市场,正经历舶来品的本土化蜕变。中国酒业协会数据显示,啤酒行业保持高增长,反弹性增长态势明显。《2024—2029年
理想星环OS开源,到底意味着什么?
3月27日,董事长兼CEO李想在2025中关村论坛年会上宣布开源理想汽车自研汽车操作系统——理想星环OS。上述消息在一定范围内引起热
春节送父母vivo Y200t:超高性价比手机只需873元,功能惊艳!vivo性价比最高的手机「春节送父母vivo Y200t:超高性价比手机只需873元,功能惊艳!」
春节来临,买新手机送父母成为不少子女的新年选择。在这个团圆的节日里,送一份陪伴和实用的礼物无疑能带来更多的幸福感。尤其是
爱高集团盘中最低价触及0.181港元,创近一年新低
截至4月16日收盘,(00328.HK)报0.192港元,较上个交易日下跌7.69%,当日盘中最低价触及0.181港元,创近一年新低。资金流向方面