业界动态
生物计算:超越图灵模型的细胞计算机 | 智能渐近线
2025-02-25 11:29

1. Abelson, H.et al.  Amorphous computing. Commun. ACM 43, 5 (May 2000), 74–82.

2. Adami, C.  The use of information theory in evolutionary biology. Annals of the New York Academy of Sciences 1256, 1 (2012), 49–65.

3. Adleman, L.M.  Molecular computation of solutions to combinatorial problems. Science 266, 5187 (1994), 1021–1024.

4. Amos, M. and Goñi-Moreno, A.  Cellular computing and synthetic biology. Computational Matter (2018), 93–110.

5. Andrianantoandro, E., Basu, S., Karig, D.K., and Weiss, R.  Synthetic biology: New engineering rules for an emerging discipline. Molecular Systems Biology 2, 1 (2006), 2006.0028.

6. Ausländer, S., Ausländer, D., Fussenegger, M.  Synthetic biology—the synthesis of biology. Angewandte Chemie Intern. Edition 56, 23 (2017), 6396–419.

7. Ausländer, S. et al.  Programmable single-cell mammalian biocomputers. Nature 487, 7405 (2012), 123–127.

8. Beal, J. et al.  The long journey towards standards for engineering biosystems: Are the Molecular Biology and the Biotech communities ready to standardise?EMBO Reports 21, 5 (2020), e50521.

9. Benenson, Y.  Biomolecular computing systems: principles, progress and potential. Nature Reviews Genetics 13, 7 (2012), 455–468.

10. Bennett, C.H.  The thermodynamics of computation—a review. Intern. J. Theoretical Physics 21, (1982), 905–940.

11. Biswas, S., Clawson, W., and Levin, M.  Learning in transcriptional network models: Computational discovery of pathway-level memory and effective interventions. Intern. J. of Molecular Sciences 24, 1 (2022), 285.

12. Calcott, B. et al.  Engineering and biology: Counsel for a continued relationship. Biological Theory 10, (2015), 50–59.

13. Canadell, D. et al.  Implementing re-configurable biological computation with distributed multicellular consortia. Nucleic Acids Research 50, 21 (2022), 12578–12595.

14. Castle, S.D., Grierson, C.S., Gorochowski, T.E.  Towards an engineering theory of evolution. Nature Commun. 12, 1 (2021), 3326.

15. Chen, Y. et al.  Genetic circuit design automation for yeast. Nature Microbiology 5, 11 (2020), 1349–1360.

16. Church, G.M., Gao, Y., and Kosuri, S.  Next-generation digital information storage in DNA. Science 337, 6102 (2012), 1628–1628.

17. Conrad, M.  Molecular computing. Advances in Computers, 31 . Elsevier, 1990, 35–324.

18. Danchin, A.  Bacteria as computers making computers. FEMS Microbiology Reviews 33, 1 (2008), 3–26.

19. Daniel, R., Rubens, J.R., Sarpeshkar, R., and Lu, T.K.  Synthetic analog computation in living cells. Nature 497, 7451 (2013), 619–623.

20. de Lorenzo, V., Marliere, P., and Sole, R.  Bioremediation at a global scale: from the test tube to planet Earth. Microbial Biotechnology 9, 5 (2016), 618–625.

21. De Lorenzo, V. et al.  The power of synthetic biology for bioproduction, remediation and pollution control: the UN’s Sustainable Development Goals will inevitably require the application of molecular biology and biotechnology on a global scale. EMBO Reports 19, 4 (2018), e45658.

22. Espeso, D.R., Martçnez-Garcça, E., De Lorenzo, V., and Goñi-Moreno, Á.  Physical forces shape group identity of swimming Pseudomonas putida cells. Frontiers in Microbiology 7, 1437 (2016).

23. Gardner, T.S., Cantor, C.R., and Collins, J.J.  Construction of a genetic toggle switch in Escherichia coli. Nature 403, 6767 (2000), 339–342.

24. Goni-Moreno, A., Redondo-Nieto, M., Arroyo, F., and Castellanos, J.  Biocircuit design through engineering bacterial logic gates. Natural Computing 10, (2011), 119–127.

25. Goñi-Moreno, A. and Amos, M.  A reconfigurable NAND/NOR genetic logic gate. BMC Systems Biology 6, 1 (2012), 1–11.

26. Goñi-Moreno, A., Amos, M., and de la Cruz, F.  Multicellular computing using conjugation for wiring. PLoS One 8, 6 (2013), e65986.

27. Goñi-Moreno, Á., Benedetti, I., Kim, J., and de Lorenzo, V.  Deconvolution of gene expression noise into spatial dynamics of transcription factor–promoter interplay. ACS Synthetic Biology 6, 7 (2017), 1359–1369.

28. Goñi-Moreno, A. and Nikel, P.I.  High-performance biocomputing in synthetic biology–integrated transcriptional and metabolic circuits. Frontiers in Bioengineering and Biotechnology 40, (2019).

29. Grozinger, L. et al.  Pathways to cellular supremacy in biocomputing. Nature Commun. 10, 1 (2019), 5250.

30. Grozinger, L. and Goñi-Moreno, Á.  Computational evolution of gene circuit topologies to meet design requirements. In Proceedings of the 2023 Artificial Life Conf. MIT Press, Cambridge, MA, USA.

31. Jonas, E. and Kording, K.P. Could a neuroscientist understand a microprocessor? PLoS Computational Biology 13, 1 (2017), e1005268.

32. Knight, T.F. and Sussman, G.J.  Cellular gate technology. Massachusetts Inst of Tech Cambridge Artificial Intelligence Lab, 1998.

33. Li, X. et al.  Synthetic neural-like computing in microbial consortia for pattern recognition. Nature Commun. 12, 1 (2021), 3139.

34. Lou, C. et al.  Synthesizing a novel genetic sequential logic circuit: A push-on push-off switch. Molecular Systems Biology 6, 1 (2010), 350.

35. Macía, J., Posas, F., and Solé, R.V.  Distributed computation: The new wave of synthetic biology devices. Trends in Biotechnology 30, 6 (2012), 342–349.

36. MacLennan, B.J.  Natural computation and non-Turing models of computation. Theoretical Computer Science 317, 1–3 (2004), 115–145.

37. Manicka, S. and Levin, M. Minimal developmental computation: a causal network approach to understand morphogenetic pattern formation. Entropy 24, 1 (2022), 107.

38. Martínez-García, E. et al. SEVA 4.0: An update of the Standard European Vector Architecture database for advanced analysis and programming of bacterial phenotypes. Nucleic Acids Research 51, D1 (2023), D1558–D1567.

39. Meng, F. and Ellis, T. The second decade of synthetic biology: 2010–2020. Nature Commun. 11, 1 (2020), 5174.

40. Monod, J.  Chance and Necessity: An essay on the natural philosophy of modern biology , 1971.

41. Nielsen, A.A. et al.  Genetic circuit design automation. Science 352, 6281 (2016), aac7341.

42. Pájaro, M., Alonso, A.A., Otero-Muras, I., and Vázquez, C.  Stochastic modeling and numerical simulation of gene regulatory networks with protein bursting. J. Theoretical Biology 421, (2017), 51–70.

43. Pandi, A.et al.  metabolic perceptrons for neural computing in biological systems. Nature Commun. 10, 1 (2019), 3880.

44. Pattee, H.H. and Rączaszek-Leonardi, J.  How Does a Molecule Become a Message? LAWS, LANGUAGE and LIFE: Howard Pattee’s Classic Papers on the Physics of Symbols with Contemporary Commentary. Springer, 2012, 55–67.

45. Pezzulo, G. and Levin, M.  Top-down models in biology: Explanation and control of complex living systems above the molecular level. J. The Royal Society Interface 13, 124 (2016), 20160555.

46. Regot, S. et al. Distributed biological computation with multicellular engineered networks. Nature 469, 7329 (2011), 207–211.

47. Rizik, L. et al.  Synthetic neuromorphic computing in living cells. Nature Commun. 13, 1 (2022), 5602.

48. Sleight, S.C., Bartley, B.A., Lieviant, J.A., and Sauro, H.M.  Designing and engineering evolutionary robust genetic circuits. J. Biological Engineering 4, 1 (2010), 1–20.

49. Solé, R.V., Montañez, R., and Duran-Nebreda, S.  Synthetic circuit designs for earth terraformation. Biology Direct 10, 1 (2015), 1–10.

50. Srivastava, R. and Bagh, S.  A logically reversible double Feynman gate with molecular engineered bacteria arranged in an artificial neural network-type architecture. ACS Synthetic Biology 12, 1 (2022), 51–60.

51. Stoof, R. and Goñi-Moreno, Á.  Modelling co-translational dimerization for programmable nonlinearity in synthetic biology. J. Royal Society Interface . 17, 172 (2020), 20200561.

52. Tas, H., Grozinger, L., Goñi-Moreno, A., and de Lorenzo, V.  Automated design and implementation of a NOR gate in Pseudomonas putida. Synthetic Biology 6, 1 (2021), ysab024.

53. Tas, H. et al.   Contextual dependencies expand the re-usability of genetic inverters. Nature Commun. 12, 1 (2021), 355.

54. Wang, B., Kitney, R.I., Joly, N., and Buck, M.  Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology. Nature Commun. 2, 1 (2011), 508.

55. Xie, Z. et al.  Multi-input RNAi-based logic circuit for identification of specific cancer cells. Science 333, 6047 (2011), 1307–1311.

    以上就是本篇文章【生物计算:超越图灵模型的细胞计算机 | 智能渐近线】的全部内容了,欢迎阅览 ! 文章地址:http://www78564.xrbh.cn/news/34878.html 
     文章      相关文章      动态      同类文章      热门文章      栏目首页      网站地图      返回首页 迅博思语移动站 http://www78564.xrbh.cn/mobile/ , 查看更多   
最新文章
鞍钢ZQ235-Al热轧碳素钢 ZQ235-F自行车用冷轧碳素钢和钢板
我公司自创办以来一直以质量第一为宗旨,目前所销售的进口钢材有高速钢.粉末钢.钨钢.塑胶模具钢. 五金模具钢. 压铸模具用钢.
赵露思正面刚!直播激烈回应鼻子动了传闻,放狠话+质问,多年造谣忍不了了
家人们,你们听说了吗?赵露思在直播里又回应整容质疑了,这次是真的急眼了!8月9号那天,她正开开心心地直播呢,突然看到弹幕里
各方密集发声 “普特会”更多信息披露
美国总统特朗普与俄罗斯总统普京定于15日在美国阿拉斯加州举行会晤。会晤前,美俄欧乌等各方密集表态,释放更多信息。综合目前各
北京上门回收30年茅台酒瓶空瓶
北京上门回收30年茅台酒瓶空瓶30年茅台酒53度500ml回收价格大约为13700元左右,有着很高的市场价值。30年的茅台酒属于 高端酱香
AI冲击职场,今年美国已有逾1万个岗位因AI应用消失
【TechWeb】随着人工智能(AI)技术的迅猛发展,其对职场人的冲击持续加剧,科技行业的年轻人首当其冲。据人力资源机构Challenge
东城区东直门回收冬虫夏草
高价回收礼品;回收茅台,回收 五粮液,回收剑南春,回收国窖,回收水井坊单瓶及礼盒,回收各种老酒,回收贵州茅台酒, 高价回
(塑料防雾剂)塑料防雾母料 塑料薄膜防雾剂 塑料透明防雾母料
产品名称:塑料高透明防雾剂英文名称:SuLiaoGaoTouMingFangWuJi产品型号:UTA-GTM-GN-FWJ-MG-01产品介绍: 塑料高透明防雾剂又
黄石压缩空气第三方检验中心
我公司专业办理第三方压缩空气检测报告,提供全国范围内上门检测服务。压缩空气现场检测项目包括:固体颗粒、水含量、油含量、菌
144锭等编织机
我公司是编织机与电工机械的专业制造厂商。公司以团结、拼搏、开拓、进取是我经营宗旨.我公司生产的编织机被广泛应用于织带(鞋带
NN游戏社区以技术驱动革新,百万玩家体验再升级
深耕全球游戏服务领域五年的NN游戏社区,近日宣布完成服务体系全面升级。作为雷神控股旗下的全球游戏服务平台,自2020年上线以来